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Abstract

The task of Named Entity Recognition (NER) is aimed at identifying named en-

tities in a given text and classifying them into pre-defined domain entity types

such as persons, organizations, locations. Most of the existing NER systems

make use of generic entity type classification schemas, however, the comparison

and integration of (more or less) different entity types among different NER sys-

tems is a complex problem even for human experts. In this paper, we propose

a supervised approach called L2AWE (Learning To Adapt with Word Embed-

dings) which aims at adapting a NER system trained on a source classification

schema to a given target one. In particular, we validate the hypothesis that the

embedding representation of named entities can improve the semantic meaning

of the feature space used to perform the adaptation from a source to a target

domain. The results obtained on benchmark datasets of informal text show that

L2AWE not only outperforms several state of the art models, but it is also able

to tackle errors and uncertainties given by NER systems.
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1. Introduction

With the continuous and fast evolution of the Internet and the advent of

Social Media, the amount of unstructured textual data produced by the social

interactions among people has become a huge hidden treasure of knowledge.

In order to exploit such valuable insights for decision-making purposes, textual5

data needs to be processed to extract actionable insights in a machine-readable

form by means of Natural Language Processing (NLP) techniques [23].

Named Entity Recognition and Classification is one of the key Informa-

tion Extraction (IE) tasks, which is concerned with identifying entity men-

tions, which are text fragment(s) denoting real-world objects, from unstruc-10

tured text and classifying them into entity types according to a given classifi-

cation schema. Extracting valuable information from user-generated content

in the form of entity mentions, events and relations is of utmost significance for

knowledge discovery from natural language text.

For example, given the sentence,15

“@EmmaWatson no1 can play hermione better than u”,

the process of named entity recognition will identify the entity mentions as:

“[@EmmaWatson] no1 can play [hermione] better than u”.

Consequently, the named entity classification process will assign an entity type

to the entity mentions as indicated below:20

“[@EmmaWatson]Person no1 can play [hermione]Character better

than u”.

Over the past few years, several research studies towards Information Extrac-

tion have been proposed, giving leeway to the emergence of numerous academic

and commercial NER systems usually characterized by generic classification25
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schemas i.e., schemas aimed at capturing general knowledge about the world

by providing basic notions and concepts for things [21].

The possibility to easily access and exploit these sophisticated NER sys-

tems through APIs or pre-trained models became fundamental for addressing

tasks such as Data Integration [34, 58], Question Answering [55, 5, 73], Privacy30

Protection [20, 46] , and Knowledge Base Construction [56].

As introduced in [63], NER models can be broadly distinguished into two

main categories: (i) supervised machine learning models trained on large manually-

labeled corpora [24]; and (ii) knowledge-based methods [67, 52] relying on lexi-

cons and domain-specific knowledge. Further distinctions in NER models have35

also been studied in the state of the art in terms of:

(a) level of automation, i.e., pre-defined rules (declarative rule language) [8],

automated processes (machine learning) [74, 25] and hybrid approaches [31];

(b) type of text, i.e., formal text such as news archives [51, 81, 32] and informal

text such as blog posts, twitter feed, emails etc. [65, 43, 54, 27, 47];40

(c) recognition and classification of named entities based on the use of domain-

dependent [71, 17, 33] or domain-independent classification schemas [1, 67,

44].

However, both supervised and knowledge-based NER models suffer from two

main limitations:45

• The amount of data available to accurately train a NER system for a

different domain classification schema can be limited, due to time, qual-

ity and cost constraints on the labeling activity. However, NER systems

based on machine learning models (e.g. Conditional Random Fields [39],

Hidden Markov Models [83] or Labeled LDA [64]) commonly assume that50

the training and test data must be represented in the same feature space

and have the same underlying distribution. When a NER system needs

to be adapted to a new target classification schema, this assumption may

not hold. Since new incoming data may be characterized by a different
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representation space and follow a different data distribution with respect55

to the source data, the lack of a training set for different data distributions

can pose problems in terms of human effort, resource and time expenses.

This scenario is perfectly depicted in the #Microposts2015 Challenge [66],

where the number of training instances (∼ 3500) is not sufficient for in-

ducing a pre-trained NER system to identify and classify entity mentions60

according to a different domain schema.

• Beyond the machine learning approaches, the task of Named Entity Recog-

nition and Classification can be also performed by exploiting Knowledge

Bases (KBs). Knowledge Bases, also referred to as Knowledge Graphs,

are defined by large networks of entities (representing real-world objects),65

their semantic types, properties, and relationships between entities [37]. In

this case, identification of entity mentions in a given text is performed by

looking for corresponding KB entities, i.e., extracting a list of all possible

KB entities for a given entity mention. However, different NER systems

can refer to different KBs (e.g. Wikipedia, DBpedia, Freebase, etc.) that70

are not guaranteed to be available and accessible at any time. For example,

the system proposed in [65] trains a LabeledLDA model using Freebase

as underlying ontology, which was shut down in 2014. Moreover, the di-

mensions of KBs increase rapidly due to newly evolving entities that users

identify every day. In this case, it could be also expensive to frequently75

update the exploited knowledge.

An additional limitation common to both approaches relates to the difficulty

in comparing and integrating different NER systems when different domain

classification schemas are under consideration. A semantic alignment of different

schemas with few instances of entity mentions from the training dataset can be80

very complex.

Although most of the NER systems make use of generic entity types, it is

evident from Table 1 that there are considerable differences among them. This

is motivated by the fact that, because of varying application scenarios and/or
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Table 1: Popular commercial and academic Named Entity Recognition systems with their

corresponding Generic Classification Schemas.

NER System Website Generic Entity Types

OSU Twitter NLP Tools [65] https://github.com/aritter/

twitter_nlp/

Band, Company, Facility, Geo-Location, Movie, Other, Person,

Product, Sportsteam, TVshow

NERD [67] http://nerd.eurecom.fr/ Thing, Amount, Animal, Event, Function, Location, Organiza-

tion, Person, Product, Time

Standford NER [24] https://nlp.stanford.edu/software/

CRF-NER.shtml

Person, Organization, Money, Percent, Location, Date, Time

Dandelion API https://dandelion.eu/ Person, Works, Organisations, Places, Events, Concepts

Google Cloud Natural Language

API

https://cloud.google.com/

natural-language/

Person, Consumer Good, Organization, Event, Location, Other

IBM Natural Language Under-

standing

https://www.ibm.com/

watson/services/

natural-language-understanding/

Anatomy, Award, Broadcaster, Company, Crime, Drug, EmailAd-

dress, Facility, GeographicFeature, HealthCondition, Hashtag,

IPAddress, JobTitle, Location, Movie, MusicGroup, Natu-

ralEvent, Organization, Person, PrintMedia, Quantity, Sport,

SportingEvent, TelevisionShow, TwitterHandle, Vehicle

Ambiverse https://www.ambiverse.com/

natural-language-understanding-api/

Person, Location, Organization, Event, Artifact, Other, Unknown

Bitext https://www.bitext.com/ Person name, Car license plate, Place, Phone number, Email ad-

dress, Company/Brand, Organization, URL, IP address, Date,

Hour, Money, Address, Twitter hashtag, Twitter user, Other al-

phanumeric, Generic

MeaningCloud https://www.meaningcloud.com/ Event, ID, Living Thing, Location, Numex, Organization, Person,

Process, Product, Timex, Unit, Other

Ingen.io https://ingen.io/ Person, Organization, Location, Geo Political Entity, Misc, Event,

Structure, Category, Lang, Artwork

Rosette https://www.rosette.com/ Location, Organization, Person, Product, Title, Nationality, Re-

ligion, Identifier, Temporal

Thomson Reuters Open Calais http://www.opencalais.com/ Company, Person, Geography, Industry Classifications, Topics,

Social Tags, Facts, Events

Alias-i Lingpipe http://alias-i.com/lingpipe/ Person, Locations, Organizations

AYLIEN https://aylien.com/text-api/ Person, Location, Organization, Product, Keyword, URLs,

emails, telephone numbers, currency amounts, Percentage, Date

ANNIE http://services.gate.ac.uk/annie/ Person, Location, Organization, Money, Percent, Date, Address,

Identier, Unknown

requirements, different NER systems use different entity classification schemas85

to classify the discovered entity mentions into entity types.
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From the generic classification schemas listed in Table 1, it is possible to

derive several considerations:

• Only the type Person is equivalently reported in all the generic schemas;

• There are few types (e.g. Location) that are present in all the schemas90

but with different associated labels (e.g. Location / Geo-Location / Place

/ Geography);

• Several types (e.g. Product) are equivalently used by few NER systems,

while in others they are either not present, attributable to other corre-

sponding types (e.g. Thing / Artifact / Artwork / etc.) or partitioned in95

multiple types (e.g. Movie, TelevisionShow, Vehicle, etc.);

• Since each generic schema is composed of different types, the Other (or

Unkown) type can assume different meanings depending on the other types

involved.

• It is also notable the use of types that are particularly related to a language100

register, such as Hashtag, Twitter user or IP address.

This paper tries to overcome the limitations of adapting NER systems while

taking into account the remarks about generic classification schemas available in

the current panorama of NER tools. In the following subsection, we summarize

the main contributions of the proposed approach with respect to the state of105

the art, highlighting the main corresponding findings.

1.1. Contributions & Findings

In this paper, we present a novel supervised approach called Learning To

Adapt with Word Embeddings (L2AWE)1 which exploits the distribu-

tional representation of named entities for adapting named entity types pre-110

dicted by a NER system trained on a source generic classification schema to a

1We release the source code of our approach for reproducibility purposes at

https://github.com/dnozza/L2AWE.
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given target one. The main contributions of the paper with respect to the state

of the art are summarized below highlighting the corresponding key findings:

• Unlike traditional NER systems which are based on machine learning mod-

els [39, 83, 64], L2AWE does not need to re-train the underlying NER115

model to be adapted to a new target generic classification schema. This

allows for easy adaptation of existing NER systems and overcome the

problem of lack of additional training time and training data labeled with

the target entity types. By analyzing the learning curves associated to the

proposed model, we derive as main finding that with a small percentage120

of training data (data annotated with the target entity types), our model

is able to achieve good performance of adaptation.

• The proposed approach adopts a well-known distributional representation

for representing entity mentions, i.e., word embeddings. The hypothesis

is that, among all the implicit aspects of a word, this representation will125

be able to reflect the entity type as well, following the distributional hy-

pothesis that words that occur in the same contexts tend to have similar

meanings [28]. In particular, two different state of the art pre-trained word

embedding models have been evaluated, and several aggregation functions

for dealing with multi-word entity mentions have been compared. As main130

finding, we point out GoogleNews(W2V) Word Embeddings with the mean

aggregation function as a suitable distributional representation model for

enabling the adaptation a NER system.

• Finally, L2AWE contributes to tackle errors and uncertainties given by

NER system and to correctly classify the most difficult cases when a source135

entity type could be associated to two (or more) target entity types. By

analyzing the results obtained on benchmark datasets of informal text, we

derive as main finding that the proposed approach outperforms not only

traditional baselines, but also recent state of the art models specifically

designed for adaptation purposes.140
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The subsequent sections are organized as follows. Section 2 introduces the

proposed model for addressing the adaptation of NER systems based on generic

classification schemas. An overview of the evaluation datasets and the results

of the performed analysis are presented in Section 3 and Section 4 respectively.

Results have revealed three main findings: (1) L2AWE is not only able to adapt145

an existing NER to a new target classification schema, but also to correct some

of the NER misclassifications; (2) word embeddings provide a remarkable im-

provement on the adaptation performance; (3) L2AWE outperforms not only a

manual mapping approach but also several baselines and state of the art models.

Section 5 presents some related works, while Section 6 reports some conclusions150

and future work.

2. Learning to Adapt with Word Embeddings

2.1. Open problems

A first investigation aimed at dealing with the issue of comparing and in-

tegrating NER systems with different entity types has been presented in [67],155

where a manual mapping between generic schemas has been defined. As rep-

resented in Figure 1, a manual mapping is a deterministic mapping from the

source entity types to the target entity types manually defined by a human

expert.

Although this study represents a first step towards the definition of cross-160

ontology NER systems, there is still a need for automatic mapping methods

that can be used for establishing mappings between cross-domain entity types

without the need for human intervention. One of the main underlying motiva-

tions is that manual mapping is a fairly subjective task that is strictly related

to the interpretation of manual annotators. Additionally, it is quite difficult to165

adapt manual mappings uniformly across diverse domains, in cases where do-

main changes might incur. In order to enable automatic mappings, some open

problems need to be accurately addressed:
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Figure 1: Manual mappings between two generic classification schemas.

1. Mention Misclassification: Entity mentions are often misclassified by

supervised NER systems mainly because of two different reasons: (i) the170

training set is composed of very few instances, and (ii) the training set is

characterized by an imbalanced distribution over the entity types. Con-

sider, for instance, an entity mention Black Sea (i.e., location) that could

be erroneously recognized as Band as per the source entity type. A deter-

ministic manual mapping - as the one reported in Figure 1 - would map175

it as (Organization), thus, propagating the error.

2. Type Uncertainty: There are also cases in which the type of an iden-

tified entity mention may be particularly uncertain, since a mention may

have subtly different meanings in the real-world. In this case, the deci-

sion of determining its type becomes difficult. While well-structured texts180

provide meaningful insights into the contextual usage of a mention, there
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can still be cases where it is difficult for an entity recognition system to

correctly classify a mention. Consider, for instance, the entity mention

Starbucks in a well-structured document snippet:

“It now takes 300 stars to reach gold level status at Starbucks,185

which means spending approximately ...”

A NER system could be uncertain about the type to be associated with

Starbucks, because it could be equally probable to classify the entity men-

tion as a Geo-Location (a particular Starbucks shop), or a Company (the

Starbucks company) as per the source entity types. This ambiguity needs190

to be solved for determining the correct type in the target classification

schema.

3. Fork Mappings: There are cases where mentions classified as one type

according to the source classification schema could be cast into one among

two (or more) different types in the target schema. Currently, focusing on195

Figure 1, three cases of fork mappings can be observed:

� mapping of type Person in the source schema to the types Person or

Character in the target schema,

� mapping of type Other in the source schema to the types Thing or

Event in the target schema,200

� mapping of type Facility in the source schema to the types Thing,

Event or Location in the target schema,

2.2. The proposed solution

In order to tackle the above-mentioned issues arising when it is intended

to adapt a NER system trained on a source classification schema to a given205

target one, this paper presents an approach called Learning To Adapt with

Word Embeddings (L2AWE), that extends the works discussed in [50, 22] by

exploiting a distributional representation for obtaining a richer semantic input

space. The adoption of such high-level input representation is motivated by the

intuition that word embeddings will be able to capture all the implicit aspect210
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of a word including its entity type since entities of the same type are expected

to appear in a similar context. Although the proposed approach for mapping

entity types from a source to a target classification schema has been investigated

on microblog posts, it can be applied to a variety of different textual formats.

We consider the problem of adapting the types of entity mentions from a source215

to a target classification schema as a machine learning problem. In particular,

given a set of entity mentions identified by a NER model originally trained

according to a source schema, our main goal is to learn how to map the source

type probability distribution to the target one.

More precisely, let RS be a NER model trained on a set ΩS = {s1, s2, ..., sns
}

of entity mentions annotated according to a source classification schema OS . Let

ΩT = {t1, t2, ..., tnt
} be the set of entity mentions that needs to be automatically

labeled according to a target schema OT . The problem of labelling ΩT accord-

ing to OT by using RS can be viewed as a transfer learning problem [59]. In

particular, the main goal is to learn a target predictive function f(·) in ΩT using

some knowledge both in the source schema OS and the target schema OT . More

formally, let P (ΩT , OS) be the distribution in the source schema used to label

an entity mention ti ∈ ΩT with the most probable type y∗S ∈ OS according to

RS and let E : ΩT → Rm be the function that maps the entity mention ti ∈ ΩT

to a m-dimensional embedding representation. The input space of the investi-

gated adaptation problem is defined as XP_E = P (ΩT , OS)_E(ΩT ), where _

is the concatenation symbol. Thus, the input space is the concatenation of the

probability distribution in the source schema and the embedded representation

related to the entity mention ti ∈ ΩT . Let yT ∈ OT be the type in the target

schema that the adaptation model should discover. Now, the adaptation of a

source type yS (of a given entity mention) to a target type yT can be modeled

as a learning problem aimed at seeking a function φ : XP_E → yT over the

hypothesis space Φ. In our case, it is convenient to represent φ as a function

f : XP_E × yT → R such that:

g(P (ti, yS)_E(ti)) = arg max
yT∈OT

f
(

(P (ti, yS)_E(ti)), yT

)
(1)
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In order to solve this problem, it is necessary to create an input space repre-220

senting each entity mention ti that can be used for learning to map the predicted

source type yS ∈ OS to the target type yT ∈ OT . As formally introduced, the

input space XP_E for each entity mention ti corresponds to the union of the

explicit distribution given by RS , P (ti, yS), and its embedded representation

E(ti). The output space denotes the most probable type yt ∈ OT . Using a225

model that is able to estimate a posterior distribution of yT , we can therefore

estimate the type distribution P (ΩT , OT ) in the target schema. A graphical

example of the proposed approach is reported in Figure 2.

The aim of L2AWE is then to learn the function f that is able to correctly

label an entity mention ti ∈ ΩT according to the prediction P (ti, yS) given by a230

NER model previously trained on ΩS and its embedding representation E(ti).

To accomplish this task, any machine learning algorithm can be adopted.

Figure 2: Graphical example of L2AWE.
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2.3. Modeling the Embeddings

The additional input information provided by the embedding representation

of the entity mention can strongly influence the performance of the adaptation235

model. The expected improvement is strictly related to the enhanced semantic

meaning of the input representation. The core idea behind word embeddings

is that words that appear in similar contexts should have similar vector repre-

sentations. The proposed approach is motivated by the intuition that, among

all the implicit aspects of the word, word embeddings will also reflect the entity240

type property. For instance, it is intuitive to think that words of type Person

are used in the same context.

Since the amount of available training data is typically not enough for train-

ing a word embeddings model from scratch, we considered different pre-trained

models for mapping entities to real-valued vectors:245

• Wiki2Vec: these word embeddings have been obtained by training the

Skip-gram model over a Wikipedia dump.

• GoogleNews(W2V): Google News is the first corpus subjected to the

learning of Word2vec (W2V) models [53]. This corpus is composed of

100 billion words. The model is available online2 and it contains 300-250

dimensional vectors for 3 million words and phrases trained by CBOW

model with negative sampling.

• BERT [13]: BERT (Bidirectional Encoder Representations from Trans-

formers) is a pre-trained contextual representation model which enabled

researchers to obtain state of the art performance on numerous NLP tasks255

by fine-tuning the representations on their data set and task, without the

need for developing and training highly-specific architectures [57]. The

model has been pre-trained on the the BooksCorpus (800M words) [84]

and English Wikipedia (2,500M words).

2https://code.google.com/archive/p/word2vec/
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Word Embeddings. A word embeddings model is defined as a mapping C :

V → Rm that associates to each word in the vocabulary w∗ ∈ V a real vector

C(w∗) ∈ Rm. Indeed, given an entity mention ti composed of several words

ti = {wi
1, . . . , w

i
n}, the function E can be written as the aggregation of the

mapping C over all the words wi
j :

E(ti) = •(wi
1, . . . , w

i
n), (2)

where • is the aggregation function. This is a common approach addressed260

in several state of the art studies [16, 78, 11]. Beyond the commonly inves-

tigated aggregation functions max, min and mean, the first aggregation that

corresponds to take the word embeddings of the first word only has also been

evaluated (eventually considered as the one carrying the type information, e.g.

University of Milano-Bicocca). Note that, when an entity mention is a single265

word, the function E will behave exactly like the original mapping C.

Contextual Embeddings. A contextual word embeddings model is defined as a

mapping C : D → Rm that associates to each document d ∈ D a real vector

C(d) ∈ Rm. Note that each document d can be composed of any number of

words, from single tokens to sentences.270

In this paper, we investigate two different approaches for obtaining embedded

representations of named entities. The first one, named BERTs, consider a

named entity as a document3. In the second one, named BERTt, we further

investigate the model by extracting the embeddings of single words within the

context of the sentence. For example, given the sentence “Emma Watson is a275

great actress” where Emma Watson is the named entity, we give the sentence

as input to the model and then we extract the layer representation of the single

tokens Emma and Watson. This is different from all the previously presented

approach that consider only the named entity and not its context. After we

have obtained the representation for each token, we combine it exactly as we280

3 The representation has been obtained by exploiting bert-as-a-service available at

https://github.com/hanxiao/bert-as-service.
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previously described for word embeddings approaches4. Following the feature-

based approach described in [13], the representation of single tokens is extracted

by taking the sum of their last 4 hidden layers.

3. Experimental Settings

This section presents the investigated datasets and the comparative baselines285

used to evaluate the proposed approach. Moreover, different evaluation perfor-

mance measures have been explored to analyze the performance of L2AWE for

the adaptation problem.

3.1. Datasets

To perform an experimental analysis of the proposed approach, three bench-290

mark datasets of microblog posts have been considered as ground truth (GT).

Two datasets were made available by the Named Entity Recognition and Linking

Challenges for the #Microposts2015 [66] and #Microposts2016 [68] challenges.

In particular, these ground truths are composed of 3,498 and 6,025 posts respec-

tively, with a total of 4,016 and 8,664 entity mentions. The third dataset has295

been published in the context of the shared task “Novel and Emerging Entity

Recognition at the 3rd Workshop on Noisy User-generated Text (W-NUT) [12].

The dataset consists of annotated texts taken from three different sources (Red-

dit, Twitter, YouTube, and StackExchange comments) that focus on emerging

and rare entities. The ground truth of this dataset is composed of 5,691 posts300

respectively, with a total of 3,890 entity mentions.

Beyond word embeddings, the input space has been derived using the state

of the art NER system named T-NER [65], specifically conceived for dealing

with user-generated contents. In particular, T-NER makes use of Conditional

Random Fields [39] and Labeled LDA [64] to derive P (ΩT , OS), one of the305

components of the L2AWE input space. T-NER is trained using an underlying

4 Note that we use the term token instead of word because BERT uses the WordPiece

tokenizer [79] where sentences can be splitted in words and subwords.
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source schema OS (which we refer to as the Ritter Schema) to finally derive

a NER model RS . In particular, the source schema (Ritter Schema, OS) is

composed of the types: Band, Company, Facility, Geo-Location, Movie, Other,

Person, Product, Sportsteam, TVshow. Once the entity mentions are recog-310

nized by RS and classified according to OS , they need to be mapped to the

entity types available in the target schema OT ). The target Microposts Schema

is composed of the types: Character, Event, Location, Person, Product, Orga-

nization, Thing, while the target W-NUT17 Schema is composed of the types

Location, Corporation, Person, Product, Group, Creative work.315

T-NER identifies a total of 2,535, 4,394 and 3,090 entity mentions from the

#Microposts2015, #Microposts2016 and W-NUT17 datasets respectively. In

order to create the input space for the proposed L2AWE model, it is necessary

to create a training set, where, for each entity mention identified by T-NER,

the probability distribution P (ΩT , OS), the embedded representation E(ΩT ),320

the source type yS ∈ OS and the target type yT ∈ OT should be derived. While

the probability distribution and the source type are explicitly provided by the

T-NER system, the target type needs to be specified. However, when selecting

a target type, it should be taken into account that an entity mention recognized

by T-NER could be incorrectly segmented, and some tokens of multi-word entity325

can be classified as non-entity or a single-word entity can be coupled with some

adjoining words and therefore incorrectly segmented as a multi-word entity.

Two examples are reported below.

“The [Empire State]Geo−Location [Building]Other is amazing!”.

“[Paris Hilton will]Person be in Venice next week!”.330

To finally induce the L2AWE model, a training set (one for each dataset) has

been automatically constructed by exploiting a string similarity measure (i.e.,

edit distance) which captures only the perfect matches between the mentions

identified by T-NER and the mentions in the ground truth datasets. This means

that, for each tweet in the datasets (gold standards), it has been associated with335
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each entity mention ti(T-NER) given by T-NER with the most similar entity

mention tj(GT ) in the ground truth. A couple< ti, yT > is added to the training

set if and only if there is a perfect match between the entity mentions ti(T-

NER) and tj(GT ), where yT is the correct type for that mention in the target

schema (made available from the ground truth). This automatic procedure for340

generating the training sets used by the L2AWE model is applicable to any

labeled benchmark.

Table 2: Type Distribution (%) according to the Ritter Ontology (OS).

#Microposts2015 #Microposts2016 W-NUT17

Band 3.19 3.26 6.15

Company 8.86 6.99 7.51

Facility 1.99 2.53 9.03

Geo-Loc 28.86 33.17 23.17

Movie 1.87 1.86 4.82

Other 11.93 12.32 8.97

Person 35.24 33.97 27.28

Product 3.67 2.86 3.30

Sportsteam 3.07 2.16 2.46

TVshow 1.33 0.87 7.31

Table 3: Type Distribution (%) according to the Microposts Schema (OT ).

#Microposts2015 #Microposts2016

Character 1.27 1.00

Event 1.75 3.83

Location 30.60 37.63

Organization 24.82 19.85

Person 31.69 29.57

Product 7.53 5.83

Thing 2.35 2.30

As a result, the training sets for #Microposts2015, #Microposts2016 and W-

NUT17 are composed of 1,660, 3,003 and 2,108 training instances respectively.

Tables 2, 3 and 4 show the distribution of entity types in the obtained training345

set, respectively referring to the Ritter Schema (OS) and Microposts and W-

NUT17 Schema (OT ). It is worth noticing that the distribution is strongly
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Table 4: Type Distribution (%) according to the W-NUT17 Ontology (OT ).

W-NUT17

Location 24.57

Corporation 9.64

Person 42.43

Product 6.57

Group 9.98

Creative work 6.81

imbalanced, much like real-world user-generated content. While Person and

Location (or Geo-Location) are clearly the dominant entity types, other types

are barely present (e.g. Character, Event, TVshow, Movie).350

3.2. Baseline Models

In order to compare the proposed approach with a reference, seven baseline

models have been considered:

• Baseline-Deterministic (BL-D): it is based on the manual mapping be-

tween OS and OT shown in Figure 1.355

• Baseline-Probabilistic (BL-P1): it extends the previous baseline in order

to deal with fork mappings in a non-deterministic way. In particular, for

those mentions in OS that can be classified in more than one type in OT ,

the target type has been sampled according to the a priori distribution of

mappings in the training set (e.g. 30% of Person entity mentions in OS360

are classified as Character and 70% as Person in OT ).

• Baseline-Probabilistic (BL-P2): A major downside of using the deter-

ministic manual mapping (BL-D) is that since it directly depends on the

output of the T-NER system, it will never be able to correct the target

type of the mentions which have been incorrectly classified by T-NER. For365

this reason, an additional probabilistic baseline (BL-P2) has been intro-

duced. For each mention, given the associated source type yS ∈ OS , the

target type yT has been sampled from the distribution P (OT |yS ∈ OS)

estimated on the training set.
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• Conditional Random Fields (CRF): the most widely used named entity370

recognition model, named Conditional Random Field model [39], has been

trained and tested directly over the target schema.

• Fine-tuned Bidirectional Encoder Representations from Transformers on

Named Entity Recognition task (BERTNER): we used a sentence encoder

model pre-trained on large unlabeled text, like BERT, to perform down-375

stream tasks through fine-tuning [13]. This permits to take advantage of

the broad language knowledge learned during pre-training and to use it

for a specific task (using less data and training fewer parameters). In our

experiments, we fine-tuned BERT base model for the task of named entity

recognition directly on the target schema.380

• LearningToAdapt (L2A): in order to understand the impact of the dis-

tributional representation, we compare L2AWE to our earlier proposed

approach called L2A [50, 22]. L2A is aimed at adapting a NER system

trained on a source schema to a given target domain by only exploiting

the probability distribution space (XP ).385

• Cross-Domain Model Adaptation for Named Entity Recognition (CDMA-

NER): a recently proposed and promising domain adaptation model for

NER introduced in [44]. Lin et al. propose a transfer learning approach

with neural networks, where a bidirectional LSTM model augmented with

a CRF layer is exploited for cross-domain NER. Since CDMA-NER per-390

forms named entity recognition with its own model, we had to deal with

a fair comparison with our L2AWE model. In particular, from the origi-

nal set of data, we selected only the mentions that were identified both by

CDMA-NER and T-NER (and therefore used by L2AWE). When compar-

ing CDMA-NER to L2AWE, the used datasets are, therefore, composed395

of 955 and 1,918 instances for #Microposts2015 and #Microposts2016

respectively.
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3.3. Performance Measures

In order to evaluate the different model configurations and to compare them

with the afore-mentioned baselines, several state of the art performance mea-400

sures have been considered. Accuracy, Precision, Recall and F-measure have

been estimated. Since Precision, Recall and F-measure can be strongly influ-

enced by the imbalanced distribution of the data over the entity types, the

overall performance measures of a multi-class classification problem have been

computed by two different types of average, macro-average and micro-average405

[80]. The macro-averaged measures give equal weight to each class, regardless of

their frequencies. Micro-averaged weight each class with respect to its number

of instances.

In addition to the well known metrics, we also estimated Accuracy Contribu-

tion which represents the number of correctly labeled entity mentions classified

as a specific class yT over the total number of instances:

Accuracy Contribution(yT ) =
# instances correctly classified as yT

# instances
(3)

In the following sections which report the computational results, given the

highly imbalanced distribution of entity types, Precision, Recall and F-measure410

are shown in their micro-averaged version. It is important to note that the

micro-averaged F-measure corresponds to the state of the art performance mea-

sure usually computed for evaluating NER systems, which is the Strong Typed

Mention Match (STMM). Moreover, the macro-averaged F-measure has been

also reported for the sake of completeness.415

3.4. Validation Settings

Concerning the experimental evaluation, a 10-folds cross validation has been

performed. To compare L2AWE with the baseline models both on #Micro-

posts2015 and #Microposts2016, Precisionmicro, Recallmicro, F-measuremicro

and F-measuremacro have been used for comparing the types predicted by L2AWE420

with the real types available in the ground truth. In order to evaluate the
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contribution of the different components of the input space, several configu-

rations have been explored: the probability distribution in the source schema

XP = P (ΩT , OS), the embedded representation XE = E(ΩT ) and the joint

input space XP_E = P (ΩT , OS)_E(ΩT ). Concerning the models used to train425

L2AWE, i.e., Näıve Bayes (NB), Support Vector Machines (SVM), Decision

Trees (DT), K-Nearest Neighbor (KNN), Bayesian Networks (BN), Multi-Layer

Perceptron (MLP) and Multinomial Logistic Regression (MLR), no parameter

optimization has been performed. The experiments have been conducted using

default parameters of models implemented in Weka 5. Since DT and NB learn430

on a discrete input space, a discretization policy is applied before the actual

training phase. In particular, for J48 an entropy-based approach is adopted to

find the optimal split point of a numeric attribute, while for NB a supervised

discretization is used. In both cases, the discretization policies are directly

implemented within the algorithm available in Weka.435

4. Experimental Results

In this section, several computational experiments are presented in order to

show the relevance of the proposed approach for the afore-mentioned datasets.

In Section 4.1, the best configurations of L2AWE that consider the word embed-

dings feature space (XE and XP_E) have been studied. In Section 4.2, some440

selected results have been evaluated with respect to several baselines.

4.1. Word Embeddings Feature Space

In order to investigate the advantages of considering the word embeddings

feature space, Table 5 reports the results in terms of Accuracy obtained on both

datasets for all the chosen machine learning models, aggregation functions and445

pre-trained word embeddings models, highlighting the best results (bold) for

each dataset. It is possible to highlight the following remarks based on Table 5:

5www.cs.waikato.ac.nz/ml/weka/
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Table 5: Accuracy performance of L2AWE model considering word embeddings feature space.

#Microposts2015 #Microposts2016

XE XP_E XE XP_E

Wiki2Vec
GoogleNews

(W2V)
Wiki2Vec

GoogleNews

(W2V)
Wiki2Vec

GoogleNews

(W2V)
Wiki2Vec

GoogleNews

(W2V)

BN

mean 0.61 0.60 0.76 0.76 0.70 0.73 0.71 0.74

max 0.58 0.58 0.73 0.74 0.71 0.74 0.72 0.75

min 0.58 0.59 0.73 0.75 0.71 0.75 0.72 0.76

first 0.60 0.59 0.74 0.73 0.69 0.72 0.70 0.73

DT

mean 0.51 0.54 0.75 0.74 0.70 0.71 0.77 0.78

max 0.54 0.55 0.72 0.73 0.71 0.71 0.78 0.78

min 0.52 0.55 0.75 0.74 0.68 0.69 0.78 0.77

first 0.51 0.55 0.72 0.73 0.68 0.71 0.77 0.78

KNN

mean 0.58 0.60 0.75 0.79 0.80 0.82 0.81 0.83

max 0.59 0.60 0.75 0.78 0.79 0.81 0.80 0.82

min 0.59 0.61 0.75 0.79 0.78 0.81 0.80 0.83

first 0.57 0.59 0.72 0.76 0.73 0.77 0.79 0.81

MLR

mean 0.58 0.54 0.75 0.75 0.83 0.78 0.77 0.78

max 0.59 0.54 0.74 0.73 0.77 0.78 0.78 0.77

min 0.59 0.53 0.76 0.74 0.81 0.78 0.77 0.77

first 0.57 0.55 0.72 0.71 0.80 0.76 0.78 0.76

MLP

mean 0.63 0.64 0.82 0.84 0.85 0.85 0.86 0.85

max 0.63 0.64 0.82 0.83 0.85 0.85 0.85 0.86

min 0.63 0.64 0.82 0.83 0.85 0.85 0.86 0.85

first 0.61 0.62 0.81 0.80 0.81 0.81 0.84 0.83

NB

mean 0.61 0.60 0.76 0.76 0.72 0.72 0.74 0.75

max 0.58 0.58 0.73 0.74 0.73 0.74 0.75 0.77

min 0.58 0.60 0.73 0.75 0.73 0.74 0.74 0.77

first 0.60 0.59 0.74 0.74 0.72 0.73 0.74 0.75

SVM

mean 0.63 0.65 0.84 0.85 0.84 0.84 0.86 0.86

max 0.63 0.65 0.84 0.84 0.85 0.85 0.86 0.86

min 0.62 0.63 0.84 0.84 0.85 0.85 0.86 0.86

first 0.61 0.64 0.82 0.81 0.81 0.81 0.83 0.83

• The joint input space XP_E leads to better results as opposed to consider-

ing only the embedded representation (XE) of the entity words. Although

the probability distribution vector covers only 2% of the complete feature450

space, when combined with the embedded representation, it results in a

great improvement in the classification. This means that considering only

the word embeddings representation does not provide sufficient informa-

tion for correctly mapping entity mentions.

• SVM and MLP proved to be the best models for dealing with the real-455
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valued vectors of word embeddings, while Decision Tree has been observed

to exhibit the worst performance. This is likely due to the nature of the

feature space, since the former models are best known for treating large

real-valued vectors.

• While it is difficult to decide the best performing aggregation method460

among mean, max and min, it is clear that considering the representation

of the first word of an entity mention (when dealing with multi-word

mentions), a limited view of the underlying meaning of the entity mention

has been observed, consequently leading to lower performance in terms of

Accuracy.465

• Finally, GoogleNews(W2V) pre-trained model performs better than the

Wiki2Vec one. This can be due to the different nature and size of training

data for these models.

Table 6: Class-Wise Accuracy Contribution on #Microposts2015 of L2AWE considering word

embeddings feature space (XE and XP_E).

MLP SVM

mean max min mean max min

Entity Type XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E

Character 0.48 0.54 0.48 0.48 0.42 0.54 0.54 0.48 0.60 0.48 0.48 0.48

Event 0.60 1.14 0.48 0.96 0.42 0.72 0.66 1.14 0.36 0.90 0.36 0.78

Location 21.81 27.23 21.93 27.11 22.17 27.23 22.11 27.59 22.41 27.47 22.05 27.59

Organization 13.86 18.73 14.04 18.92 13.98 19.22 13.61 19.58 14.28 19.34 12.83 19.22

Person 22.83 29.94 22.35 29.58 22.35 29.22 23.86 29.88 22.83 29.4 23.49 29.58

Product 3.19 4.76 3.25 4.52 3.25 4.28 3.43 4.82 3.19 4.82 3.19 4.58

Thing 0.90 1.63 1.08 1.75 1.08 1.63 1.02 1.63 0.96 1.63 1.02 1.57

Overall 63.67 83.98 63.61 83.31 63.67 82.83 65.24 85.12 64.64 84.04 63.43 83.8

In order to report a more compact representation of all the experimental re-

sults, in Tables 6 and 7 only the best performing configurations for L2AWE are470

shown. In particular, SVM and MLP have been selected as machine learning

models, mean, max and min as aggregation methods and GoogleNews(W2V)

pre-trained model as word embeddings representation. For each type, the high-

est result has been highlighted in bold.
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Table 7: Class-Wise Accuracy Contribution on #Microposts2016 of L2AWE considering word

embeddings feature space (XE and XP_E).

MLP SVM

mean max min mean max min

Entity Type XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E

Character 0.37 0.37 0.30 0.33 0.30 0.37 0.33 0.30 0.27 0.33 0.33 0.30

Event 3.16 3.06 3.10 3.03 3.06 3.03 3.20 3.26 3.13 3.13 3.10 3.16

Location 34.13 34.37 34.53 34.67 34.43 34.63 34.47 34.87 35.06 35.06 35.03 35.00

Organization 14.85 14.65 14.99 15.02 14.62 14.59 13.79 14.82 13.89 14.72 14.19 14.69

Person 27.57 27.74 27.47 27.51 27.54 27.67 27.41 27.91 27.47 27.64 27.27 27.84

Product 2.93 3.20 3.06 3.13 2.86 3.10 2.83 2.96 3.20 3.33 2.80 2.90

Thing 1.70 1.70 1.83 1.83 1.86 1.70 1.73 1.83 1.80 1.76 1.80 1.80

Overall 84.72 85.08 85.28 85.51 84.68 85.08 83.75 85.95 84.82 85.98 84.52 85.68

As it is possible to perceive from both tables that Support Vector Machines475

generate better results by achieving the highest Overall Accuracy. While for

#Microposts2015 the prevalence of the mean aggregation function is evident,

the results on #Microposts2016 are less clear. However, by jointly considering

the two datasets, the choice of using SVM as machine learning model and mean

as aggregation function results as the best performing adaptation model in terms480

of Accuracy.

Table 8: Precision, Recall and F-Measure on #Microposts2015 and #Microposts2016 of

L2AWE considering word embeddings feature space (XE and XP_E).

MLP SVM

mean max min mean max min

XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E

2
01

5

Precisionmicro 0.63 0.84 0.63 0.83 0.64 0.83 0.65 0.85 0.64 0.84 0.63 0.84

Recallmicro 0.64 0.84 0.64 0.83 0.64 0.83 0.65 0.85 0.65 0.84 0.63 0.84

F-measuremicro 0.63 0.84 0.63 0.83 0.63 0.83 0.65 0.85 0.64 0.84 0.63 0.84

F-measuremacro 0.54 0.74 0.54 0.73 0.54 0.70 0.57 0.75 0.54 0.73 0.52 0.71

20
16

Precisionmicro 0.84 0.85 0.85 0.85 0.84 0.85 0.83 0.85 0.84 0.86 0.84 0.85

Recallmicro 0.85 0.85 0.85 0.86 0.85 0.85 0.84 0.86 0.85 0.86 0.85 0.86

F-measuremicro 0.84 0.85 0.85 0.85 0.84 0.85 0.83 0.86 0.84 0.86 0.84 0.85

F-measuremacro 0.75 0.74 0.75 0.74 0.73 0.74 0.73 0.75 0.74 0.75 0.74 0.74

Since Accuracy has some limitations on evaluating the performance of a ma-

chine learning classifier, it is important to consider other measures for a wide

and complete overview. As presented in the previous section, Precisionmicro,
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Table 9: Class-Wise Accuracy contribution on #Microposts2015 of L2AWE and baselines.

Baselines L2A L2AWE

Entity Type BL-D BL-P1 BL-P2 CRF
BN

(XP )

NB

(XP )

MLR

(XP )

MLP

(XP )

SVM

(XP )

DT

(XP )

KNN

(XP )

SVMmean

(XE)

SVMmean

(XP_E)

Character 0.00 0.96 0.48 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.48

Event 0.00 1.14 0.30 1.04 1.20 1.20 0.00 0.00 0.00 0.06 0.54 0.66 1.14

Location 24.76 26.69 20.72 5.41 26.45 26.45 26.20 27.71 26.27 27.59 27.41 22.11 27.59

Organization 11.63 11.63 11.02 2.89 15.24 15.30 17.71 17.59 17.65 17.47 17.11 13.61 19.58

Person 27.29 27.29 22.11 19.16 25.30 25.30 27.47 27.05 26.99 26.99 26.75 23.86 29.88

Product 2.35 2.35 1.57 1.26 1.02 1.02 2.05 2.71 1.99 2.11 2.35 3.43 4.82

Thing 0.66 0.66 1.57 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.63 1.02

Overall 66.69 70.72 57.77 30.51 69.22 69.28 73.43 75.06 72.89 74.22 74.16 65.24 85.12

Table 10: Class-Wise Accuracy contribution on #Microposts2016 of L2AWE and baselines.

Baselines L2A L2AWE

Entity Type BL-D BL-P1 BL-P2 CRF
BN

(XP )

NB

(XP )

MLR

(XP )

MLP

(XP )

SVM

(XP )

DT

(XP )

KNN

(XP )

SVMmean

(XE)

SVMmean

(XP_E)

Character 0.00 0.63 0.27 0.16 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.33 0.30

Event 0.00 2.70 1.76 0.24 2.26 0.20 0.67 1.53 0.63 2.26 2.30 3.20 3.26

Location 29.77 32.77 27.34 1.62 32.93 34.43 32.13 33.97 31.90 33.63 33.83 34.47 34.87

Organization 8.72 8.72 8.23 2.36 11.92 11.29 13.22 11.92 13.55 13.32 13.39 13.79 14.82

Person 25.31 25.31 20.38 9.10 23.34 25.94 25.34 26.04 24.98 25.37 24.94 27.41 27.91

Product 2.00 2.00 1.23 8.85 1.47 0.13 1.80 1.67 1.96 1.90 1.96 2.83 2.96

Thing 0.50 0.50 1.76 0.89 0.10 0.13 0.00 0.03 0.00 0.13 0.30 1.73 1.83

Overall 66.30 72.63 60.97 23.23 72.03 72.13 73.16 75.16 73.03 76.66 76.72 83.75 85.95

Recallmicro, F-measuremicro and F-measuremacro (Table 8) provide more details485

about the issues of multi-class classification and imbalanced class distribution

as well. By looking at these measures, the superiority of SVM model is even

more unequivocal. Moreover, using the mean aggregation function leads to

the best results for both datasets, except for the Precisionmicro of #Microp-

osts2016. These results have further motivated the choice of SVM-mean as the490

best performing model considering word embeddings representation.

Contextual Embeddings. With the aim of understanding the potential of more

recent and outstanding contextual representation models, we compare the word

embeddings model that showed the best performances, i.e., GoogleNews(W2V),

with the contextual embeddings model BERT (following the two approaches pre-495

sented in Sec. 2.3). Given the input representation, we employ the best configu-

ration framework, i.e. SVM as learning model and mean as aggregation method.
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Table 11: Precision, Recall and F-Measure on #Microposts2015, #Microposts2016 and

WNUT-17 datasets of L2AWE considering word and contextual embeddings feature space

(XE and XP_E).

SVMmean

BERTNERGoogleNews(W2V) BERTs BERTt

XE XP_E XE XP_E XE XP_E

20
15

Precisionmicro 0.65 0.85 0.66 0.73 0.73 0.78 0.30

Recallmicro 0.65 0.85 0.67 0.73 0.74 0.79 0.33

F-measuremicro 0.65 0.85 0.66 0.73 0.72 0.78 0.31

F-measuremacro 0.57 0.75 0.50 0.57 0.50 0.56 0.31

2
01

6

Precisionmicro 0.83 0.85 0.72 0.78 0.76 0.81 0.43

Recallmicro 0.84 0.86 0.72 0.78 0.78 0.82 0.47

F-measuremicro 0.83 0.86 0.72 0.78 0.75 0.81 0.45

F-measuremacro 0.73 0.75 0.59 0.63 0.50 0.60 0.45

W
N

U
T

-1
7

Precisionmicro 0.75 0.80 0.62 0.70 0.66 0.73 0.41

Recallmicro 0.76 0.80 0.63 0.71 0.68 0.74 0.34

F-measuremicro 0.76 0.80 0.63 0.71 0.66 0.73 0.37

F-measuremacro 0.65 0.70 0.53 0.60 0.53 0.62 0.37

Note that the aggregation method is irrelevant for BERTs. Finally, we also com-

pare the results with the fine-tuned BERT model (BERTNER) on the considered

dataset directly on the target ontology. We report in Table 11 the results in500

terms of Precisionmicro, Recallmicro, F-measuremicro and F-measuremacro.

From the table, it can be easily noted that the L2AWE approach (SVM over

the XP_E joint input space using GoogleNews Word Embeddings) outperforms

the BERT-based approaches on all the datasets (the results showed significant

differences at 99.5% confidence level by paired t-test). It is also possible to notice505

the lower performance achieved by BERTNER with respect to the proposed

model. These unfulfilling results can be attributed to the very small size of

the training data. The impact of the reduced training instances size on the

Deep Learning models training capabilities is a known issue, which has been

also demonstrated for BERT fine-tuning [15]. Moreover, the recognition of510

named entities on informal textual contents (i.e., Twitter posts) is a very difficult

task6 and, when few training data are available, dedicated methods should be

6https://github.com/huggingface/transformers/tree/master/examples/

token-classification
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appointed for its resolution (such as T-NER).

Considering the representation models, as a general remark, we show that

the joint input space XP_E permits to obtain higher performance for all the515

considered models with respect to the only embedded representation (XE).

More importantly, the traditional word embeddings model GoogleNews(W2V)

obtains higher performance in all the considered metrics with respect to the two

variants of contextual representation model BERT. This is due to the fact that

BERT is designed as a sentence-level representation model, and consequently,520

the extracted entity mentions representation is not static, and it is strictly de-

pendent from the context. In the BERTs representation model, we consider

an entity as a document, obtaining static representations but without context:

entity mentions are usually characterized by just one or two words (e.g., on

#Microposts2016 there are 62% one-word named entities and 34% two-words525

named entities) and do not form an appropriate sentence by themselves. A dif-

ferent case is the BERTt representation model, which extracts the word-level

representation of the named entity considering the whole sentence as context.

Thus, this representation model is able to include context, but the extracted

representation is not static: entity mention representations vary widely depend-530

ing on the context. This means that two sentences mentioning the same named

entity will create two different output representations. For example, the repre-

sentation of “Paris Hilton” will vary widely considering the following sentences

“I love Paris Hilton” and “I’ve seen Paris Hilton on TV”. This variance in rep-

resentations will induce more noise in the subsequent machine learning models535

resulting in a lower performance with respect to classification based on word

embedding representation.

A similar consideration has been drawn by Bommasani et al. [4], where the

authors defined a single word as an unnatural input to the pretrained encoder.

They have shown that the best performing word embeddings can be extracted540

by aggregating representations of the single word across multiple contexts. How-

ever, following this procedure is a probing operation as it would imply to collect

1M general-purpose sentences for each word for sampling a sufficient number of
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contexts.

4.2. Baselines vs L2AWE545

Following the above considerations, the next evaluation step refers to the

comparison of L2AWE, considering the best model configuration (i.e., SVM as

machine learning model, mean as aggregator method and GoogleNews(W2V)

pre-trained model as word embeddings model), with the baselines and all the

considered machine learning models on the probability distribution in the source550

schema (Tables 9 and 10).

It can be easily noticed that all the L2AWE configurations are able to achieve

good adaptation performance in terms of global Accuracy. Lower Accuracy

contributions by L2AWE can be observed for the entity types Character and

Thing. This could be attributed to the low number of training instances avail-555

able for Character (1.27% in #Microposts2015 and 0.99% in #Microposts2016

dataset) and for Thing (2.35% in #Microposts2015 and 2.30% in #Microp-

osts2016 dataset) that does not allow any algorithm to provide remarkable con-

tributions to the total Accuracy.

Except for few cases in #Microposts2015, the consideration of a joint in-560

put space XP_E leads to the best Accuracy results, further demonstrating that

taking into account the probability distribution and the word embeddings repre-

sentation is the winning strategy for the investigated adaptation problem. This

behavior can be motivated by the fact that, while the embedded representation

is capable of extracting underlying factors of the entity mentions, these are not565

sufficient on their own. They do, however, have a great advantage of enhanc-

ing the mere probability distribution vector, thereby, resulting in significantly

better performance.

Analyzing the adaptation results of L2AWE from a qualitative point of view,

it is interesting to highlight that the model is able to correctly re-classify the570

target types of entity mentions that have been misclassified, i.e., mentions which

would have been cast to incorrect target types due to wrong predictions given

by the T-NER system. For example, the entity mention “iPhone” was classified
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Table 12: Precision, Recall and F-Measure on #Microposts2015 and #Microposts2016 of

L2AWE and baselines.

Baselines L2A L2AWE

BL-D BL-P1 BL-P2 CRF
BN

(XP )

NB

(XP )

MLR

(XP )

MLP

(XP )

SVM

(XP )

DT

(XP )

KNN

(XP )

SVMmean

(XE)

SVMmean

(XP_E)

20
15

Precisionmicro 0.73 0.77 0.78 0.48 0.75 0.75 0.69 0.70 0.69 0.71 0.71 0.65 0.85

Recallmicro 0.67 0.71 0.58 0.31 0.69 0.69 0.73 0.75 0.73 0.74 0.74 0.65 0.85

F-measuremicro 0.68 0.72 0.65 0.27 0.70 0.70 0.71 0.73 0.70 0.72 0.72 0.65 0.85

F-measuremacro 0.38 0.62 0.46 0.34 0.38 0.39 0.38 0.40 0.38 0.42 0.43 0.57 0.75

20
16

Precisionmicro 0.72 0.78 0.79 0.05 0.73 0.72 0.71 0.72 0.71 0.75 0.75 0.84 0.86

Recallmicro 0.66 0.73 0.61 0.23 0.72 0.72 0.73 0.75 0.73 0.77 0.77 0.85 0.86

F-measuremicro 0.68 0.74 0.68 0.08 0.72 0.72 0.71 0.73 0.71 0.75 0.75 0.84 0.86

F-measuremacro 0.37 0.61 0.49 0.09 0.44 0.44 0.42 0.45 0.42 0.50 0.51 0.74 0.75

as a Company by T-NER (which would lead to the target type Organization

using manual mappings), while L2AWE correctly re-classifies it as a Product. As575

another example, “Ron Weasley” (a character in Harry Potter movies/books)

was misclassified as Band by T-NER, while L2AWE correctly re-classifies it as

a Character. In the latter case, L2AWE was able to assign the correct type

among the two possible types defined according to fork mappings. Although

there are very few instances in the training sets for the target types Character580

and Event and the performance of L2AWE is not very high in terms of Accuracy

contribution, the proposed approach seems to be promising.

In Table 12, the performance of the proposed approach with respect to dif-

ferent input space configurations are compared with the baselines in terms

of Precisionmicro, Recallmicro, F-measuremicro and F-measuremacro. As ex-585

pected, the deterministic baseline (BL-D) achieves good performance in terms

of Precisionmicro, but low results of Recallmicro. In fact, BL-D is accurate

when labeling mentions thanks to the deterministic mapping, at the expense of

Recallmicro. Also in this case, it can be easily noted that using SVM over the

joint input space XP_E significantly outperforms the baselines and the other590

L2AWE configurations both for the #Microposts2015 and #Microposts2016

datasets (the results showed significant differences at 99.5% confidence level by

paired t-test).

These experiments show that the proposed approach provides significant
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results with respect to all the considered performance measures and obtains a595

balanced contribution of Precisionmicro and Recallmicro. Moreover, L2AWE

drastically improves the Recallmicro measure. This is likely due to its ability to

learn how to map the initial hypothesis given by T-NER to a new target type,

adapting type mentions that were previously misclassified.

For a comparison with the most recent approach of the state art, we re-600

port the class-wise Accuracy, Precisionmicro, Recallmicro, F-measuremicro and

F-measuremacro achieved by CMDA-NER and L2AWE in Tables 13 and 14.

Similar to the previous findings, a low accuracy contributions can be observed

for the entity types Character and Thing due to their scarce presence in the

training set. It can be also noticed that the results on the #Microposts2015605

dataset are on average lower than the #Microposts206 one. This is likely due

to the lower number of instances and consequently the reduced size of the train-

ing set. As a final consideration, L2AWE is able to obtain significantly higher

results in terms of all the considered performance measure with respect to the

state of the art CDMA-NER model ( the results showed significant differences610

at 99.5% confidence level by paired t-test).

Similar results have been obtained on the W-NUT17 dataset, where L2AWE

computed on the joint input space XP_E (F-measuremicro equals to 0.79)

outperforms the L2AWE model computed on the embedding input space XE

(F-measuremicro equals to 0.75) and the L2A model exploiting SVM as learning615

model (F-measuremicro equals to 0.69). The results showed significant differ-

ences at 99.5% confidence level by paired t-test.

Beyond the classic performance evaluation measures, several capabilities

have been measured on #Microposts2015 and #Microposts2016 datasets with

respect to the three issues stated in Section 2, i.e., mention misclassification,620

type uncertainty and fork mapping.

These capability measures are described as follows:

1. Mention Misclassifications Correctly Mapped (MMCM): this mea-
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Table 13: Class-Wise Accuracy contribution on #Microposts2015 of L2AWE and CDMA-NER

models.

2015 2016

Entity Type CDMA-NER L2AWE CDMA-NER L2AWE

Character 0.32 0.32 0.00 0.31

Event 0.11 0.84 3.09 3.87

Location 26.05 30.91 37.54 41.05

Organization 10.44 17.72 9.69 13.46

Person 24.58 31.33 21.52 25.65

Product 1.90 4.85 0.99 2.46

Thing 0.00 1.79 0.21 1.83

Overall 63.40 87.76 73.04 88.64

Table 14: Precision, Recall and F-Measure on #Microposts2015 and #Microposts2016 of

L2AWE and CDMA-NER models.

CMDA-NER L2AWE

20
15

Precisionmicro 0.61 0.88

Recallmicro 0.38 0.74

F-measuremicro 0.62 0.88

F-measuremacro 0.4 0.76

20
16

Precisionmicro 0.72 0.88

Recallmicro 0.46 0.77

F-measuremicro 0.72 0.88

F-measuremacro 0.48 0.78
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sure indicates the percentage of entity mentions that T-NER has incor-625

rectly classified and a model is able to correctly map according to the

target entity types. For the considered experimental set, in the training

sets for #Microposts2015 and #Microposts2016, T-NER has incorrectly

classified 524 and 921 entity mentions respectively.

2. Type Uncertainty Correctly Mapped (TUCM): this measure de-

notes the percentage of uncertain entity mentions that a model correctly

maps to entity types in the target schema. To compute this measure, a

mention ti has been defined as an uncertain mention when it has a low

gap between probability distribution over different types. More formally,

ti is considered as uncertain if:

P (ti, yTj
)− P (ti, yTk

) ≤ αU ∀j 6= k (4)

where αU is a parameter that has been experimentally determined as equal630

to 0.2. The number of mentions that have been recognized as uncertain

in the training sets are 59 for #Microposts2015 and 109 for #Microp-

osts2016.

3. Fork Mappings Correctly Resolved (FMCR): this measure repre-

sents the percentage of mentions of a type defined as fork mappings (i.e.,635

Event, Location, and Character) that have been correctly classified by

a model. According to the training sets, the number of mentions that

fall under this category is 50 for #Microposts2015 and 145 for #Microp-

osts2016.

The results are shown in Table 15, where the most successful models have640

been considered. Since the capabilities depends on the performance of the

named entity recognition system adopted (two NER systems could generate

different mention misclassification or entity types that in one case are uncertain

and in another are considered certain) for a fair and significant comparison we

reported only those results obtained by the adaptation systems that share the645

same NER system. Results are not reported for the CRF model, however, since
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they do not perform any adaptation and are trained and tested directly into the

target domain.

Table 15: Capabilities performance on #Microposts2015 of L2AWE and baselines.

Baselines L2A L2AWE

BL-P1 BL-P2
MLP

(XP )

SVM

(XP )

DT

(XP )

KNN

(XP )

SVMmean

(XP_E)

2
01

5

MMCM 2.67 19.00 35.88 25.57 36.07 34.92 64.50

TUCM 15.25 27.29 57.63 42.37 45.76 45.76 76.27

FMCR 25.96 22.10 26.19 25.00 28.57 40.48 63.10

20
1
6

MMCM 4.67 18.26 32.03 24.00 40.50 39.52 64.71

TUCM 14.68 24.53 53.21 31.19 56.88 52.29 76.15

FMCR 34.00 32.17 48.67 28.52 57.41 58.94 78.33

Moreover, among the baselines, the deterministic one (BL-D) has been dis-

carded because its capability performance always amounts to zero scores since650

it mimics a fixed manual mapping a priori defined. This means that if an entity

mention is incorrectly classified in the source schema, it will always be mapped

to the corresponding (incorrect) entity type in the target schema. For instance,

if the mention “Paris” is incorrectly classified by T-NER as Movie (whereas its

correct type is Location), BL-D will map Paris to Product, providing no im-655

provement for the MMCM capability. The same reasoning is applicable also for

TUCM and FMCR capabilities.

The first consideration that can be derived from the capabilities performance

results is that, once again, SVM performs considerably better for all the con-

sidered measures over the joint space. Secondly, it can also be observed that,660

in most cases, the results on #Microposts2015 set are worse than the ones on

#Microposts2016. This is due to the fact that the number of entity mentions

available for training L2AWE in the #Microposts2016 is about twice as much

as in #Microposts2015 (as stated in Section 3). In other words, the higher the

number of mentions that L2AWE can use to learn the correct mappings, the665

better the capabilities will be. Furthermore, in order to better understand the

poor results of FMCR, a detailed investigation has been conducted on the pre-

dictions of the machine learning models. For #Microposts2015, the number of
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(a) (b)

Figure 3: Cross-validation Learning curves. The curves are plotted with the mean scores, while

variability during cross-validation is shown with the shaded areas that represent a standard

deviation above and below the mean for all cross-validations.

mentions involved in a fork mapping is 50 (21 for the entity type Character and

29 for the entity type Event). Given the low frequency of these entity types in670

the dataset (note that the entity types Location, Person and Organization are

composed of more than 400 instances each), it is very difficult for a machine

learning algorithm to learn how to recognize their presence. On the other hand,

in #Microposts2016, there are 145 entities involved in a fork mapping: 30 enti-

ties are Character and 115 Event. The results in terms of FMCR are promising675

but, following the previous intuition, the performance increase is mainly due to

correctly classified instances for the entity type Event, while only a few instances

of the type Character have been correctly identified.

In order to demonstrate the ability of the model to obtain satisfying results

when few training instances are available (i.e., data annotated with the target680

entity types), we estimated the validation learning curves on the considered

datasets reporting the results in Figure 3. It is possible to notice that, from the

30% and 20% of the training instances for the #Microposts2015 and #Micro-

posts2016 datasets respectively (which corresponds to approximately 500 and

600 instances), L2AWE is able to achieve an accuracy higher than 80% still685
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Table 16: Type Distribution (%) according to the Ritter Ontology (OS).

500-news Reuters-128

Band 2.59 1.36

Company 6.48 15.49

Facility 3.11 1.9

Geo-Loc 24.35 42.93

Movie 0.52 2.45

Other 14.77 14.40

Person 39.12 17.66

Product 1.81 2.45

Sportsteam 5.18 1.36

TVshow 2.07 0.00

Table 17: Type Distribution (%) according to the News Ontology (OT )

Entity Type 500-news Reuters-128

Event 1.30 0.00

Organization 38.34 39.13

Person 38.08 19.84

Place 18.91 39.40

Species 0.52 0.00

Thing* 1.04 0.82

Work 1.81 0.82

maintaining a constant standard deviation of the performance measure.

4.3. Additional Experiments

In order to demonstrate the generalization abilities of the proposed approach

to other domains, we performed additional experiments considering two bench-

mark corpora composed of news based documents. These corpora differ from690

the baseline datasets (as described in Section 3.1) primarily in their domain,

i.e., news domain as opposed to the microblogging domain. Documents in the

news corpora are relatively longer, more formal, often very factual, and have

an enhanced descriptive textual format than microblogging posts, which are

generally shorter, informal, and often opinionated. Given the dataset size, we695

performed a 5-folds cross validation.
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Dataset. The two news datasets that we additionally considered have been pub-

lished under the N3 datasets collection [69]. These datasets, namely, a.) 500-

news and b.) Reuters-128 consist of 500 and 128 documents, respectively, where

each document is annotated with entity mentions and their corresponding DB-700

pedia URIs. The 500-news dataset contains generic English news snippets, while

Reuters-128 contains economic news articles. A total of 1,000 entity mentions

are present in 500-news dataset with a uniform distribution of 2 entity men-

tions per document, whereas the Reuters-128 dataset has a total of 880 entity

mentions, with an average of 3 entity mentions per document.705

Differently from the previous benchmark datasets specifically created for

Named Entity Recognition and Classification task, the entity type was not given

explicitly in these two news datasets7. For this reason, we extracted the entity

type information from DBpedia by querying its public SPARQL endpoint with

the named entities URIs by taking only a selected pool of types of interest. This710

process resulted in the extraction of the entity type for 523 entity mentions in

the 500-news dataset and for 648 entity mentions for the Reuters-128 dataset.

The retrieval of all the entity mentions in the datasets was not possible due

to not available or inconsistent DBpedia URIs (some mentions refer to entities

not in DBpedia, while some URIs are not existent anymore). The final target715

News Schema is, thus, composed of the pairwise disjoint types: Person, Place,

Organization, Work, Event, Species, Thing*. While the main classes are still

present compared to the Microposts and Ritter Ontology (Person, Place, Or-

ganization, Other), we can observe few differences in the less populated classes,

such as Species and Work. Also, the target News Schema represents a com-720

plete traversal of the DBpedia Ontology at a medium level of abstraction, with

Thing* being used for all the entities that do not have any of the other more

specific types. As a consequence, we observe that Thing* in the target News

Schema has a different interpretation and extension than Other in the Ritter

Ontology (which conceptually includes also species and works) and Thing in725

7It is assumed that the entity types can be fetched directly from DBpedia.
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the DBpedia Ontology (where it indicates the superclass of any other class and

thus the type of any entity consistently with OWL2 semantics8).

In order to proceed with the classification through the L2AWE models, we

replicated the same process described in Section 3.1 for obtaining the input

data. We used the benchmark NER system T-NER for deriving P (ΩT , OS).730

Consequently, we retained only the named entities in the datasets which have

also been extracted by T-NER.

As a result, the datasets for Reuters-128 and 500-news are composed of 368

and 386 instances respectively. Tables 16 and 17 reports the distribution of the

entity types in the derived datasets, respectively referring to the Ritter Schema735

(OS) and News Schema (OT ).

As with the previously investigated datasets, the distribution is strongly

imbalanced. Person and Geo-Location (or Place) and Organization are the most

common types in both ontologies. It is interesting to notice the high percentage

of mention annotated as Company in the Ritter Ontology for the Reuters-128740

dataset, which is an expected output given the economic news domain. It should

also be mentioned that the Reuters-128 dataset does not contain instances of

two classes (i.e., Event,Species), due to the limited number of entity mentions.

Results. In Table 18, we show the results of the best performing L2AWE mod-

eli.e., SVM as learning model, mean as aggregation method and GoogleNews(W2V)745

as representation method, compared to the approaches based on BERT (follow-

ing the three approaches considered in Sec. 4.1). The results are reported in

terms of Precisionmicro, Recallmicro, F-measuremicro and F-measuremacro.

Findings are very similar to the ones drawn for the Social Media datasets

(Table 11). It is clear how the L2AWE model outperforms the BERT-based750

model (results are significantly different at 99.5% confidence level computed with

paired t-test). This further demonstrates the positive impact of the proposed

approach for the task of adapting named entity types to a given target schema.

8https://www.w3.org/TR/owl2-overview/
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Table 18: Precision, Recall and F-Measure on news-500 and Reuters-128 datasets of L2AWE

considering word and contextual embeddings feature space (XE and XP_E).

SVMmean

BERTNERGoogleNews(W2V) BERTs BERTt

XE XP_E XE XP_E XE XP_E

n
ew

s-
50

0

Precisionmicro 0.83 0.84 0.73 0.78 0.78 0.78 0.26

Recallmicro 0.84 0.85 0.73 0.78 0.77 0.78 0.29

F-measuremicro 0.83 0.84 0.73 0.78 0.77 0.78 0.27

F-measuremacro 0.53 0.54 0.50 0.52 0.53 0.53 0.27

R
eu

te
rs

-1
28

Precisionmicro 0.89 0.89 0.85 0.85 0.81 0.83 0.13

Recallmicro 0.89 0.90 0.85 0.85 0.80 0.83 0.14

F-measuremicro 0.89 0.89 0.85 0.85 0.81 0.83 0.14

F-measuremacro 0.73 0.73 0.71 0.71 0.68 0.69 0.14

Moreover, results show that L2AWE is not only suitable for domains other

than Social Media, but that it is also an effective methodology. The main755

difference that can be noticed with the Social Media datasets is the importance

of the probability distribution extracted by T-NER. Indeed, results are not

significantly different at 99.5% confidence level by paired t-test. Thus, it could

be inferred from these findings that the probability distribution obtained by

T-NER is not helpful in improving performance on news datasets. However,760

this issue is due to T-NER source domain, i.e., Social Media. Indeed, this NER

system is specifically conceived for dealing with user-generated contents. This

means that the output probability distribution computed on news data will be

less precise and useful than the ones obtained on Social Media domain. BERT-

based models obtained lower performance than L2AWE, the reasons could be the765

same presented in Section 4.1: limited training instance size, the limitation of

using a sentence-level representation model, and non-static and unstable entity-

level representations.

5. Related Works

This section presents a detailed account of related works in the field of do-770

main adaptation for named entity recognition. In particular, we focus on the

research studies as well as the research gaps that have been found in the area of
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NER domain adaptation for informal text formats such as Twitter microposts.

Primarily, in the context of Semantic Web as well as application areas such

as large information systems, [14] have proposed the use of machine learning775

techniques (multi-stage learning) to semi-automatically create semantic map-

pings between entity types (concepts) of two classification schemas using some

state of the art semantic similarity measures. It is also possible to find machine

learning methods applied to Ontology Matching [19, 72, 18] in the literature.

Textual annotation and re-classification statistics have been also proposed in [2]780

in order to semantically interpret class-to-class ontology mappings. However,

it is important to note that these approaches have been based on collecting

feedback on class-to-class mappings in order to improve ontology alignments.

Moreover, in [6] the authors suggested that the performance of similarity mea-

sures (based on different textual features) for ontology matching is dependent785

on the type of ontologies being investigated. [29] provide a thorough review of

ontology engineering with respect to mapping approaches seen in the state of

the art, specifically, for the field of biomedicine.

During the last years, the use of embedding representation of word and sen-

tences has been increasingly seen in the NLP community. Word Embeddings790

[75, 53, 61] are the standard component of most NLP approaches due to their

ability to capture syntactic and semantic information of words from large scale

unlabeled text. These approaches have been further generalized to a higher

granularity level, such as sentence embeddings [35, 49, 41]. More recently, con-

textual embeddings trained on large corpora [30, 62, 13] took over advancing the795

state of the art for several major NLP tasks. In particular, BERT (Bidirectional

Encoder Representations from Transformers) [13] demonstrated impressive re-

sults on eleven NLP tasks [76] paving the way to a large number of its extensions

[48, 40, 70].

Concerning the considered problem, in [60], the authors have studied the use800

of neural word embeddings to obtain a high performing named entity recognition

system, while in [82] the representation of words as vectors in the semantic

space followed by the use of string similarity metrics for ontology mapping
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has been investigated. More recently, in [36] an unsupervised approach named

DeepAlignment has been presented. This approach makes use of pre-trained805

word vectors of entity types in order to compute semantic similarity across entity

types of different ontologies when performing ontology matching. Although this

paper focuses on the use of a flat classification schema, we drew inspiration and

realised research gaps in the literature in terms of class-to-class mappings across

diverse ontologies, particularly for the task of Named Entity Recognition, from810

the works as cited above.

When it comes to mapping entity types of classification schemas used specif-

ically by NER systems, a manual (and subjective) approach has been used for

establishing such mappings between entity types of two different NER schemas.

In particular, [67] have used manual mappings as a way to bridge the gap be-815

tween NER systems using different schemas for tasks such as comparison and/or

integration of NER systems. When many-to-one mappings are used, i.e., when

one source type is mapped to at most one target type, and when the source

classification is reasonably accurate, manual mappings may achieve a good per-

formance. However, in contexts such as microblogging platforms, when different820

generic schemas are used for classification (for a given domain) and pre-trained

NER systems are affected by the dynamics of new upcoming entities, these map-

pings have several limitations, as have been discussed in the previous sections.

Furthermore, the problem of adapting NER models had been investigated

in the context of formal texts in [9, 10] in the last decade. Arnold et al. [1]825

proposed an approach for domain adaptation to learn a domain-independent

NER base model, which can be adapted to specific domains. [45] present a very

recent investigation for cross-domain NER (pre-trained on a source domain such

as online news) by use of an instance transfer based approach with enhanced Re-

current Neural Network (RNN) for a target domain of politics and study the830

application of such a model for Q&A systems. While these models aimed to

adapt different domain-independent classification schemas, several state of the

art approaches have been introduced to adapt NER models trained on specific

schemas to adapt to new domains since then. A bit further from L2AWE, there
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are approaches that work on mapping a domain-specific source schema to a835

completely different target one. In [8] the authors presented a NER rule-based

language that is further used for building domain-specific rule-based NER sys-

tems. However, rule-based approaches require additional time for developing

and tuning the defined rules according to each domain or type of dataset. A

more recent study presented in [38] portrays the use of distributed word rep-840

resentations to adapt named entity recognition models learned in one domain

(such as Sports) to other domains (such as Finance, and Medicine) by model-

ing domain-specific differences of language semantics. Moreover, investigations

presented in [44] show a bidirectional LSTM model augmented with a CRF

layer for cross-domain NER, while neural methods for transferring well-learned845

knowledge in the source domain to target domain have been studied in [7].

Specific domains, such as eHealth, have witnessed a growth of research con-

tributions. Considering the scarcity of domain-specific training data as well

as the necessity of adopting peculiar classification schemas, several named en-

tity recognition systems based on neural architectures and transfer learning850

paradigms have been proposed. A recent transfer-learning based approach has

been proposed in [63] for adapting a NER system from a source (medicine) do-

main to a target domain by using a linear chain CRF. In particular, the authors

proposed the use of a transfer learning approach to adapt a CRF trained on

a source domain to a target domain by learning the source and target corre-855

lations and fine-tuning the model to domain-specific patterns. Lee et al. [42]

propose a transfer learning approach to perform named entity recognition in

the form of de-identification of a given patient’s protected health information.

The proposed approach transfers a pre-trained LSTM-CRF model from a large

labeled dataset to a smaller dataset. A similar approach has been explored by860

Giorgi et al. [26] where a bidirectional LSTM model trained on large and noisy

biomedical datasets has been used to perform named entity recognition on small

and domain-specific gold standard datasets based on four entity types. For the

study of cross-specialty medical NER, [77] propose the use of a double trans-

fer learning framework which leverages a Bi-LSTM network for learning text865
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representations and performing feature representation transfer. The Bi-LSTM

network is coupled with the use of CRF models for sequence labeling in source

and target domains separately to avoid annotation efforts. Additionally, Bhatia

et al. presented a framework in [3] for performing named entity recognition

for domains with low resources such as medicinal texts. They proposed a tun-870

able transfer learning architecture to counter the data scarcity problem, coupled

with a parameter sharing approach to transfer overlapped representation from

the source to the target domain.

While the above-mentioned approaches are focused on formal text, few works

[50, 22] have addressed the adaptation problem in an informal context such as875

when dealing with microblogging formats, where the language used by the users

can vary significantly (use of abbreviations, slangs, punctuations and wrong use

of capital letters/words) and new entities emerge frequently. In this work, we

extended the former investigations (as seen in [50, 22]) by introducing word em-

beddings for adapting a pre-trained NER system to novel generic classification880

schemas. To the best of our knowledge, this work is one of the primary contri-

butions for informal textual contents (i.e., Twitter microposts) where different

distributional representations with several aggregation functions have been eval-

uated for adaptation purposes.

6. Conclusion and Future Works885

This paper presents an approach named LearningToAdapt with Word Em-

beddings (L2AWE), which aims at adapting a NER system trained on a source

generic classification schema to a given target one by exploiting a rich semantic

input space. From the experimental evaluation, it is possible to conclude that

the use of word embeddings can strongly improve the performance, both in terms890

of traditional measures and capabilities, on the task of adapting trained NER

systems to new schemas. The best adaptation abilities have been obtained by

jointly considering word embeddings of the entity mentions and the probability

distribution over the source entity types as the input space, and by using Sup-
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port Vector Machines as the machine learning classifier. Remarkably, we found895

word embeddings based on Word2vec more useful for this task than contextual

word embeddings based on BERT, probably because word-dependent represen-

tations provide more consistent signals to the classifier than (highly specialized)

sentence-dependent representations when limited training data are used.

As future work, we highlight the possibility to investigate some additional900

and promising models for training L2AWE, such as Random Forest. This step

would allow us to understand the robustness of the model also adopting ensemble

learning strategies. Another important issue that could be studied as future

work regards the case of new or rare entity mentions that cannot be represented

with word embeddings since they are not included in their vocabulary. This905

is especially crucial in the context of social media where users generate new

words and acronyms everyday. One solution could be to address the problem

by a combined approach of character-level and word-level embeddings. It would

be also interesting to specifically train word embeddings models on corpora

where the ontology type class is provided for the entity mentions, for example910

by exploiting the Wikipedia pages structure. Moreover, additional experiments

over different and more domain-specific corpora (e.g. medical) are planned for

future investigations.
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